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A b s t r a c t  

A1-Mn alloys display the competition of condensed 
matter phases with periodic cubic and non-periodic 
icosahedral order respectively. Both types of order 
are connected by a single continuous rotation M(/3) 
in the hypercubic lattice of 6-space projected to 3- 
space. The rotation M(/3) results from Schur's lemma 
[Schur (1905). Sitzungsber. Preuss. Akad. Wiss. pp. 
406-432] applied to the cubic and icosahedral point 
groups. For 0 <-/3 < 7)" it preserves tetrahedral sym- 
metry. For /3 ~= 0 ° one finds cubic symmetry, for 
/3i= 13.28 ° icosahedral symmetry. Implications for 
the AI-Mn structure are presented. 

I n t r o d u c t i o n  

The experimental observation by Schechtman, Blech, 
Gratias & Cahn (1984) of a phase in A1-Mn with 
diffraction patterns of icosahedral point symmetry 
has stimulated many experimental and theoretical 
investigations [see Mackay & Kramer (1985)]. A 
quasilattice with two rhombohedral cells associated 
with the icosahedral group was constructed by 
Kramer & Neri (1984) before the experimental 
observation and now serves as a possible model for 
the icosahedral phase. The system AI-Mn has a cubic 
phase which can be converted by appropriate phase 
transitions to the icosahedral one (Urban, Moser & 
Kronmiiller, 1985). The similarity between the cubic 
and icosahedral phases has been noted by several 
authors. Pauling (1985) proposed a structure for the 
new phase based on multiple twinning of cubic crys- 
tals. Guyot & Audier (1985) and Audier & Guyot 
(1986) in detailed models of the cubic and icosahedral 
phases pointed out the striking correspondence of the 
two phases. Elser & Henley (1985) described quasi- 
crystal structures as the limit of periodic structures 
and discussed these and similar phases. In the present 
article it is shown that a detailed analysis of the 
crystallographic and non-crystallographic point 
groups leads to a continuous rotation which preserves 
tetrahedral symmetry and connects cubic with 
icosahedral symmetry and order. 
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1. P o i n t  s u b g r o u p s  o f  the  h y p e r o c t a h e d r a l  g r o u p  in the  
E u c l i d e a n  s p a c e  L r6 

Consider the hypercubic lattice in £6. Its point sym- 
metry group is the hyperoctahedral group O(6), 
described by Coxeter & Moser (1965). The elements 
of 0(6)  are all 6! permutations of the symmetric 
group S(6) along with 2 6 reflections of the six 
orthonormal basis vectors. We denote elements f of 
.0(6) by 

~ i o f ( i ) ,  i = 1 , . . . ,  6, a permutation from S(6) 

f :  te, (f)  = + l ,  i = 1 , . . . , 6 ,  (1) 

which may be condensed into the two-row symbol 

I,...61 f =  e~f(1) ebf(6) " (2) 

We shall indicate any ei = - 1  by - f (  i) ~ f (  i). To f 
there corresponds a 6 x 6  matrix representation 
/~6(f), with elements 

~)6 ( f )  = ei(f)8,.f(j), i , j= 1 , . . . ,  6. (3) 

Now we define the orthogonal 6 x 6 matrix by 

mC: mC= 1 
2 

0 1 1  0 1 i  

1 0 1  i 0 1  

1 1 0  1 i 0  
0 i l  0 1 1  

1 0 i  i 0 i  

i 1 0  1 1 0  

, (mC)r = (m¢)-I. 

(4) 

The six column vectors of m c form six orthogonal 
unit vectors which could serve as a basis of the hyper- 
cubic lattice in £6. The selection of the first three or 
last three rows of m c determines a projection of these 
vectors from ~-6 to tWO three-dimensional orthogonal 
spaces £3 and ~-3 respectively. In ~-3, the projected six 
basis vectors become 

1 
c mt - 3  0 1 1 0 . 

- -  

1 0 1 1 

(5) 

These six vectors, together with their images under 
inversion, are the three basis vectors of the face- 
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Table 1. Generators g of cubic and icosahedral groups 

The index denotes the order of the generator./~6(g) denotes the embedding and representation in k "~ and fl the Schur rotation angle. 
The transformed representation D6(g)= m(/3)D6(g)[m([3)] -t splits into irreducible representations D~(g) and D32(g) in E3~ and £3 

fl = 13.28 ° 

respectively. We use qb = (1 +x/5)/2. 

g D6(g) fl 

I1 2 3 4 5 6 0<_/3<¢r 
4 5 3 1 2 6  

I1 2 3 4 5 6 0-</3< ¢r 
2 3 1 5 6 4 

I1 2 3 4 5 6 
3 1 6 2 4 3  /3=0 

1 1 2 3  4 5  61 h 2 2 1 3 ~ ~, /3=0 

1 2 3 4 5 6 
1 4 2 5 6 3 

D~(g) 

li  0 il 01 

0 i 0 
1 0 0 
0 0 1 
0 1 0 
1 0 0 
0 0 1 

[4-1/2 4/2 --½ [ 
-4 /2  ~ 4- ' /2  

4-i/2 4/2 I 

'°il o T 
0 0 

D32(g) 

0 i 0 
i 0 0 
0 0 i 

-4/2 - *7 t / 2  
4-1/2 ~ -412 

-412 -4- ' /21 
i o o 
o i o 
o o i 

centred cubic lattice (Henry & Lonsdale, 1969), along 
with their images under the full cubic group Oh "" 
m3m. The left application of elements g from Oh to 
my generates permutations and reflections of the six 
column vectors which may be expressed by fight 
application to my ofa 6 x 6 matrix D6(g). It is verified 
that a similar result, with the same matrix /~6(g), 
applies to m~, so that we get the combined result 

D6(g)mC= mCl~6(g), D6(g): = mC[)6(g)(mC) -1. 

(6) 

The 3x3 blocks D3(g) an  d D32(g) of D6(g) and the 
two-row symbol (1) for D6(g) are given in Table 1 
for the generators gk of order k of the cubic groups. 
In passing we note that this six-dimensional rep- 
resentation of the full cubic group could be obtained 
from the non-trivial one-dimensional representation 
of the subgroup D2h by induction (Haase, Kramer, 
Kramer & Lalvani, 1987). 

From (6) and Table 1 we establish the following 
results: The generators g and hence the cubic groups 
are embedded into the hyperoctahedral group 
through /~6(g). The 6x6  representation /~6(g) is 
explicitly reduced by the matrix m c in the block- 
diagonal form 

mCD6(g)(mC)-l= D6(g)= D3(g)+ D32(g). (7) 

The representations D 3 and D32 are irreducible and 
are related in Table 2 to standard notation as given 
by Lax (1974). 

Consider now the embedding of the icosahedral 
group J into 0(6) proposed by Kramer & Ned (1984). 

This embedding may be modified for the present 
setting of the generators g2 and g3 with the new 
generator g5 given in Table 1. The group-subgroup 
diagram for the present purpose then becomes 

12(6) 
/ 

Oh Jh 

/ I \ / \  
Td 0 Th J 

T 

(8) 

2. The representation of the tetrahedral group T 
and the Schur rotation from cubic to icosahedral 

point symmetry 

Consider the tetrahedral subgroup T~23  of f2(6). 
The reduced form D6~[ T of its representation from 
Tables 1 and 2 becomes 

O6~ T ~-. I/"4 0 I 
0 /-'4 , (9) 

where the irreducible representation/'4 appears twice 
in identical form. Schur (1905) in his celebrated 
lemma considered a matrix M which commutes with 
all matrices of a group representation D. He showed 
that if D is irreducible then the matrix M must be a 
multiple of the identity. 

We look now for 6 x 6 matrices M fulfilling 

MD6(g)=D6(g)M for all g ~ T. (10) 
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Table 2. Generators and irreducible representations D 3 
and D 3 of  cubic icosahedral groups G in the notation 

of  Lax (1974) 

G O r d e r  G e n e r a t o r s  D 3 D 3 

T, 23 12 g2, g3 1-'4 /`4 
O, 432 24 g2, g3, g4 1"4 ['5 
Th, m3 24 g2, g3, i2 F~ F~ 
Td, 43m 48 g2, g3, h2 ['5 /'4 
Oh, m3m 48 g2, g3, g4, i2 F4 / '5 * 
J, 235 60 g2, g3,g5 13121 1312-1t 
Jh, m3---5 120 g2, g3, g5, i2 1312[ - 13121 - 

* Notation for O < Oh. 
t Notation from Haase, Kramer, Kramer & Lalvani (1987). 

We are interested only in orthogonal matrices M. 
Application of Schur's lemma to D 6 from (9) and use 
of the irreducibility of F4 yields that M must corre- 
spond to an element of the orthogonal group 0(2 ,  ~)  
which in block form may be parametrized as 

M = [  I3c°sf l  :t:/3sin/3] 0<-f l<Tr  (11) 
/3 sin/3 +/3cos/3  ' 

where 13 denotes the 3 x 3 unit matrix. For present 
purposes it suffices to consider only the upper sign 
in (11) so that M =  M(/3)  describes an element of 
S0(2, ~) which we call a Schur rotation. 

Since the Schur rotation M(/3) commutes with 
D6~,T, we are free to rotate m ~ according to 

mC ~ m(/3)= M(/3)m ~. 

An explicit computation of m(/3) yields 

m(f l )  = ' 4  

where 

O c s  O c g  

s O c  g O c  

c s O  c g O  

O g c  O g 6  

c O g  6 0  g 

g c O  s c O  

c = cos a, s = sin a, 
6 = - c o s  a, g = - s in  a, 
a = (rr/4) -/3,  cot 2a  = tan 2/3. 

(12) 

(13) 

For the tetrahedral group, we have then found a 
continuous family of matrices m(/3) which reduce 
the representation/~6~ T. 

Consider now the other cubic groups O and Td 
obtained by extension of T. In both cases the irre- 
ducible representations D 3 and D 3 are inequivalent 
(cf. Table 2) and Schur's lemma enforces /3 =0 ,  
m = M(0)  = m ¢. 

Next consider the icosahedral group J which has 
the tetrahedral group T as a subgroup. From Kramer 
& Neff (1984) we know that there exists a reduced 
form with 

o  J:l ° I 0 D3 , (14) 

where D 3 and D 3 are two inequivalent irreducible 
representations denoted in Kramer & Neri (1984) by 
i and to and in Haase etal. (1987) by [312] and [312_]. 
If we choose the restrictions to T as D35 T =/-'4 = 
D3~ T, there should exist a Schur rotation M(/3i)  such 
that D6,~J takes the form (14). The angle/3~ is found 
by inspection of m(/3) to be 

/3i: tan 2/3~ _ !  /3~ - 2, = 13"2825 ° 
(15) 

t a n 2 a ~ = 2 ,  a~=31.7174 °. 

We have found then that, among the continuous 
family of reductions 0 ( 6 ) >  T obtained by a Schur 
rotation, the reduction to cubic point symmetry 
0 (6 )  > O, Td occurs at /3 = t ic=  0 and the reduction 
to icosahedral point symmetry 0 ( 6 ) >  J at 13 =/3~ = 
13.2825 ° . The six vectors associated with the face- 
centred cubic order are continuously transformed into 
the six vectors associated with icosahedral order 
and perpendicular to the faces of the regular 
dodecahedron. 

3. First application to lattices and quasilattices in £3 

In the general projection method described by 
Kramer & Neri (1984), the projections of hyperplanes 
from a periodic lattice in ~-" yield in E 3 an n-grid 
whose sets of planes are orthogonal to the projections 
of the basis vectors from E" to E 3. A quasilattice is 
constructed from the n-grid by dualization. The edges 
of the quasilattice are formed from the projections 
of the basis vectors. This construction applies in par- 
ticular to the projection from E 6 to a quasilattice in 
£3 associated with the representation [312] of the 
icosahedral group (Kramer & Ned, 1984; Kramer, 
1985, 1986). 

Consider now the hypercubic lattice in £6 and the 
projection of its six basis vectors to the space £31 
obtained from m(fl)  [(13)] as the three top lines. The 
six projected vectors define a hexagrid in E 3 and a 
corresponding quasilattice for any/3. We obtain: 

(a) for 0-< 13 < 7r, a continuous family of quasilat- 
tices compatible with tetrahedral point symmetry, and 
periodic for/3 = 0,/3 = 7r/4,/3 = 3r  r/4;  

(b) for /3 =/3 c = 0  cubic periodic lattices and in 
particular the face-centred cubic lattice with cubic 
point symmetry; 

(c) for /3 = / 3 i =  13.2825 ° a quasilattice which is 
non-periodic and is compatible with icosahedral 
point symmetry. 

The symmetric 6 x 6 matrix formed by the scalar 
products of the six projected vectors in E 3 is given in 
Table 3. 

4. Concluding remarks 

In the third part of this article attention was directed 
to the continuous rotation from the face-centred cubic 
lattice to the icosahedral quasilattice. The Schur rota- 



PETER KRAMER 489 

Table 3. Scalar products o f  the six projected vectors in 
E~ appearing in the three top rows of  m(~3), equation 

(13), multiplied by 2 

1 2 3 4 5 6 

1 1 cs  cs  c 2 - s 2 - cs cs 

2 l cs  cs  c 2 - s 2 - cs  

3 1 - c s  cs c 2 - s 2 

4 1 - cs  - cs  

5 1 - c $  

6 1 

higher dimension, the ones compatible with a point- 
group symmetry. The present use of a Schur rotation 
shows that many symmetry elements may be pre- 
served even when going from periodic to non-periodic 
order. It is tempting to think of other Schur rotations 
which might unify the understanding of the new 
phases of condensed matter and of their relation to 
known periodic phases. 

tion preserves the tetrahedral symmetry and hence 
three twofold and four threefold axes. This may be 
part of the answer to the question why Guyot & 
Audier (1985) and Audier & Guyot (1986) in their 
models find a smooth connection of the cubic and 
icosahedral structure along a threefold axis. Note that 
the vectors corresponding to columns 4, 5, 6 of m(/3) 
in E 3 are in a plane for /3 =0  and span the thin 
rhombohedron for/3 = 13.28 °. Clearly a study of the 
diffraction pattern is required as a function of/3. 

The group-subgroup analysis given in the second 
part does not depend on the choice of the face-centred 
cubic lattice in E 3. The same Schur rotation applies 
to other cubic lattices in E 3 and their parent lattices 
in E 6. The Schur rotations could be considered in the 
Landau theory for the stability problems as analysed, 
for example, by Bak (1985). In this relation we note 
that Birman (1966) has proposed and applied group- 
subgroup techniques for second-order phase transi- 
tions. The scheme of equation (8) suggests the 
extension of this approach to higher point groups. 

It was proposed by Kramer & Neri (1984) to select, 
among the many possible projections from spaces of 
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Abstract 

A package of programs has been developed for 
efficient restrained least-squares refinement of 
macromolecular crystal structures. The package has 
been designed to be as flexible and general purpose 
as possible. The process of refinement is divided into 
basic units and an independent computer program 

* Present address: 79521 Highway 99N, Cottage Grove, Oregon 
97424, USA. 

handles each task. Each functional unit communi- 
cates with other programs in the package by way of 
files of well defined format. To modify or replace any 
program, the user need only understand the function 
of that particular element. Stereochemical restraints 
are defined in a general way that can be applied to 
proteins, nucleic acids, prosthetic groups, solvent 
atoms and so on. Guide values for bond lengths and 
bond angles are specified in a straightforward direct 
manner. Designated groups of atoms can be held 
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